
International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December-2013 1946
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Design and Implimentation of Embedded Linux
on ARM Platform

Mr. Amol R.Wagh, Prof.Vijay S.Patil

Abstract— In this paper we explains the Embedded Linux, generic architecture of Embedded Linux and different types of host/target
development set up. In this paper we also explain design procedure of Embedded Linux for target architecture ARM. Building of x-loader;
u-boot and root file system is required for porting of designed Embedded Linux on ARM processor. To port designed Embedded Linux on
ARM platform required SD-card partitioning also described. Kernel source code is modified according to requirement and modified source
code ported on OMAP3530 processor based on ARM Cortex-A8 as its core.

Index Terms— Embedded Linux, Beagleboard-xM, Toolchain, porting, root file system, SD-card partitioning, ARM.

—————————— ——————————

1. INTRODUCTION
In all the fields there is an increasing demand of portable and
embedded system. It includes embedded applications such as
cellular telephones, MP3 players and a host of digital home
entertainment devices, also less obvious examples such as
bank ATMs, printers, cars, traffic signals, medical equipment,
technical diagnostic equipment, aerospace and many more.
Essentially anything with a microprocessor that is not consid-
ered a computer but performs some kind of function using
computing is a form of embedded system.

1.1 WHAT IS LINUX –

Linux is an operating system kernel written by Linus Torvalds.
The Linux kernel provides a variety of core system facilities for
any system based upon Linux to operate correctly. In everyday
conversation Linux is termed as Linux distribution. There are
number of Linux distributions from MontaVista, Wind River,
Timesys, Fedora etc. This Linux distributions are vary in pur-
pose size and price with each other but they share a common
goal: to provide a user with a prepackaged, shrink-wrapped set
of files and an installation procedure to get the kernel and vari-
ous overlaid software installed on a certain type of hardware for
a certain purpose.

1.2 WHAT IS EMBEDDED LINUX –

Embedded Linux typically refers to a complete system for
Linux distribution targeted at embedded devices. The same
Linux kernel source code used for building the wide range of
devices such as workstations, servers etc. It is possible to con-
figure a variety of optional features according to the intended
use of the kernel.

To devolop a new embedded system product operating

system modified according to fit the target embedded board
and the modified operating system according to our require-
ment is ported on to specific embedded system board. Accura-
cy, speed, less power consumption, networkability and strin-
gent time consntraint are important chararacteristics of an em-
bedded system.

1.3 TYPICAL EMBEDDED LINUX SETUP

Fig.1 Typical Embedded Linux Set Up

2. GENERIC ARCHITECTURE OF EMBEDDED
LINUX SYSTEM

————————————————
• Mr.Amol R.Wagh is currently pursuing masters degree program in E&TC

engineering from R.C.Patel Institute of Technology Shirpur, India, PH-
09579518209. E-mail: amolrwagh@gmail.com

• Prof.Vijay S.Patil is currently working as associate Professor in E&TC
Dept. R.C.Patel Institute of Technology Shirpur, India, PH-07588814275.
E-mail: vijayshri12@gmail.com

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 4, Issue 12, December-2013
ISSN 2229-5518 1947

IJSER © 2013
http://www.ijser.org

Fig.2 Generic architecture of embedded linux system

HARDWARE MUST MEET SOME BROAD CHARACTERIS-
TICS TO RUN LINUX SYSTEM

i) Linux normally requires at least a 32-bit CPU containing a
MMU.
ii) A sufficient amount of RAM must be available to accom-
modate the system.
 iii) Minimal I/O capabilities are required.
 iv) The kernel must be able to load a root file system through
some form of permanent storage, or access it over a network.

Kernel is core core component of the operating system. Its
purpose to manage hardware and provide high level abstrac-
tions for user level softwares. Kernel acts as a interface be-
tween hardware and user level applications. Low level inter-
faces of kernel provide the direct control of hardware on
which kernel runs. High level components include files, sock-
ets, processes and signals. Between this two levels kernel use
some interpretation components for the purpose to under-
stand and interact with structured data coming from or going
to some perticuler devices for example some networking pro-
tocols.

Fig.3 Kernel interface

Applications rely on libraries and special system daemons to
provide familiar APIs and abstract services that interact with
the kernel on the applications behalf to obtain the desired
functionality. The main library used by most Linux applica-
tions is the GNU C library, glibc. Libraries are typically linked
dynamically with applications

3. TYPES OF HOST/TARGET DEVOLOPMENT
SETUP

There are three host/target architectures are available for de-
velopment of Embedded Linux system.

3.1. LINKED SETUP –

Fig .4.1 Linked Setup

In this set up the target and host are permanently linked to-
gether using a physical cable. This link is typically a serial ca-
ble or an Ethernet link. The main property of this setup is that
no physical hardware storage device is being transferred be-
tween the target and the host. As illustrated in above fig. 3.1
the host contains the cross platform development environ-
ment, while the target contains an appropriate boot-loader, a
functional kernel, and a minimal root filesystem.

3.2 REMOVABLE STORAGE SETUP –

Fig. 4.2 Removable Storage Setup

In this set up, there are no direct physical links between the
host and the target. A storage device is written by the host
which is then transferred into the target and is used to boot
the device. As shown in above fig. 3.2 the host contains the
cross platform development environment. The target contains
only a minimal boot-loader. The rest of the components are
stored on a removable storage media such as Compact-Flash
IDE device, MMC Card, which is programmed on the host and
loaded by the targets minimal bootloader upon startup.

3.3 STANDALONE SETUP-

In this set up the target is self-contained development system
and includes all the required software to boot, operate and
develop additional software. In such a type of method does
not require any cross-platform development environment,
since all development tools run in their native environments.
There is no need to transfer between target and host.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 4, Issue 12, December-2013
ISSN 2229-5518 1948

IJSER © 2013
http://www.ijser.org

Fig.4.3 Standalone Setup

4. THE SYSTEM DEVOLOPING PLATFORM

Linux runs on a large and ever-growing number of machine
architectures, but not all these architectures are actually used
in configrations. Linux kernel supports 24 different architec-
tures and ARM is one of them.

 ARM –

ARM, which stands for Advanced RISC Machine, is a family
of processors maintained and promoted by ARM Holdings
Ltd. According to Wikipedia around 70% of all 32 bit embed-
ded CPU’s are based on ARM architecture. Instead it designs
complete CPU cores for its customers. Based on the ARM
core, charges customers licensing fees on the design, and lets
them manufacture the chip wherever they say fit. There is
one important characteristics all ARM processors share the
same ARM instruction set. This does noy mean that all ARM
CPUs and boards can be programmed and set up in the same
way, only that the assembly language and resulting binary
codes are identical for all ARM processors meeting a certain
revision of the architecture. The ARM architecture is very
populer in many fields of application from cellphones and
PDAs to networking equipment, and there are hundreds of
vendors providing products and services around it.

5. CREATING A TARGET EMBEDDED LINUX –

A target Embedded Linux is created by configuring and bun-
dling together the approprite system components. There are
following main steps to creating a target Linux system.

i. Determine system components
ii. Configure and build the kernel and creation of tool-

chain
iii. Building the x-loader, u-boot and root file system
iv. SD-Card partitioning
v. Set up boot software and configuration then bringing

up the OMAP-3530 ARM processor board.

5.1 Determine system components

At first decide the target architecture. In our work we use
ARM as target architecture. Following tools are needed for
creation of toolchain -

 Binutils-2.20.1a
 Kernel-2.6.22
 gcc-4.5.1
 glibc-2.13
 glibc-port-2.13
 gmp-5.0.1
 mpfr-3.1.0
 mpc-0.8.2

This, all sytem components are compatible with each other.

5.2 A Toolchain –

Following are the steps for creation of toolchain by using all
the tools.

 Firstly downloads all the packages required to

build the toolchain from respective sources.
 Make the environment of toolchain by defining

environment variables.
 Firstly compile and install the binutils, which as-

sembles the object files generated by GCC in an ex-
ecutable image.

 Compiles and install the header files of the kernel
 Compile the temporary version of GCC
 Compile the c libraries glibc or uclibc according to

our need for target architecture.
 Compile and install GMP and MPFR which are the

libraries required for mathematical operations.
 Install the final verson of GCC with previous li-

braries.

5.2.1 CONIFGURE THE KERNEL

To extract the kernel in current directory use the command:
 # tar -xjvf linux-2.6.22.tar.bz2
Before configure kernel makes sure development tools (gcc
compilers and related tools) are installed on our system. Now
start kernel configuration by typing any one of the command:

make config: The most traditional text-based configuration
interface, it is hard to use and is very Cumbersome enter the
command line, we can configure the line by line.

make menuconfig: Text-based configuration menu interface,
is a common way under the character terminal.

make xconfig: Window mode configuration based on a graph-
ical interface, under the Xwindow recommended.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 4, Issue 12, December-2013
ISSN 2229-5518 1949

IJSER © 2013
http://www.ijser.org

5.2.2 COMPILE KERNEL

The Linux kernel supports a lot of different CPU architectures.
The methods to port the Linux kernel to a new board are
therefore very architecture dependent. For building the linux
kernel, cross-compiler should be made accessible on your exe-
cution path. Entering make command would start compilation
and create a compressed kernel image. The resulting kernel
image is placed in arch/arm/boot directory.

• $export ARCH=arm
• $ export CROSS_COMPILE= arm-none-linux-gnueabi
• $ make

5.3 BUILDING THE X-LOADER, U-BOOT AND ROOT

FILE SYSTEM

X-loader is a small first stage boot loader derived from the u-
boot base code to be loaded into the internal static ram. Be-
cause the internal static ram is very small (32k-64k), x-loader is
stripped down to the essentials and is used to initialize
memory and enough of the peripheral devices to access and
load the second stage loader (UBoot) into main memory. U-
Boot is designed to be the "Universal Bootloader" and goes a
long ways to support multiple processors, boards, and OS's. u-
boot is a second stage boot loader that is loaded by the x-
loader into DDR. The u-boot can perform CPU dependent and
board dependent initialization and configuration not done in
the x-loader. It's primary purpose is to setup the kernel envi-
ronment; and load and boot the kernel. The sources of u-boot
and x-loader specific to the ARM board can be obtained and
built using make utility on terminal. The output of the build
process is u-boot.bin and MLO.

5.4 SD-Card partitioning

Some ARM boards do not have any onboard flash, to keep
their bootloader. Rather, code onboard the board reads the
second-stage bootloaders from the SD card. For the OMAP to
find and boot off the SD Card, the first primary partition must
contain a FAT32 partition formatted with 255 heads and 63
sectors. It is very specific, but not hard to setup. The SD Card
should have 2 partitions: a smaller FAT32

Following are the steps to partition the SD card on a linux ma-
chine

5.4.1 FORMATTING THE SD CARD

To determine which device the SD Card Reader is on our sys-
tem, plug the SD Card into the SD Card Reader and then plug
the SD Card Reader into the system. After doing that, done the
following to determine which device it is on our system.

 $ [dmesg | tail

 Fdisk utilty is used to partition SD card on a linux machine.

The following command starts the fdisk. We must clear the
partition table before changing the underlying geome

• Command (m for help): [d]
• Selected partition 1

5.4.2 SET THE GEOMETRY OF THE SD CARD

If the print out above does not show 255 heads, 63 sec-
tors/track, then do the following expert mode steps to setup
the SD Card:

• Go into expert mode.
 Command (m for help): [x]

• Set the number of heads to 255.
 Expert Command (m for help): [h] Number of heads
 (1- 256, default xxx): [255]

• Set the number of sectors to 63.
 Expert Command (m for help): [s]
 Number of sectors (1- 63, default xxx): [63]

• Now Calculate the number of Cylinders of the SD

Card.
 #cylinders = FLOOR (the number of Bytes on the SD
 Card (from above) / 255 / 63 / 512)
 So for this example:
 2021654528 / 255 / 63 / 512 = 245.79. So we use 245
 (i.e. truncate, not round).

• Set the number of cylinders to the number calculated.
 Expert Command (m for help): [c] Number of cylind
 ers (1-256, default xxx): [enter the number you calcu
 lated]

• Return to Normal mode.
 Expert Command (m for help): [r]

5.4.3 PARTITIONING THE SD CARD -

5.4.3.1 CREATE THE FAT32 PARTITION FOR BOOTING

• Command (m for help): [n]
 Command action

e - extended
p - primary partition (1-4)
[p] Partition number (1-4): [1]
First cylinder (1-245, default 1): [(press Enter)]
Using default value 1
Last cylinder or +size or +sizeM or +sizeK (1-245, default
245): [+50]

• Command (m for help): [t]
Selected partition 1

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 4, Issue 12, December-2013
ISSN 2229-5518 1950

IJSER © 2013
http://www.ijser.org

Hex code (type L to list codes): [c]
Changed system type of partition 1 to c (W95 FAT32
(LBA)) Command (m for help): [a]
Partition number (1-4): [1]

5.4.3.2 CREATE THE LINUX PARTITION FOR THE
ROOT FILE SYSTEM

• Command (m for help): [n]
Command action
e - extended
p - primary partition (1-4) [p]
Partition number (1-4): [2]
First cylinder (52-245, default 52): [(press Enter)]
Using default value 52
Last cylinder or +size or +sizeM or +sizeK (52-245, default
245): [(press Enter)]

• Now, Save the new partition records on the SD Card
• Command (m for help): [w]

5.4.4 FORMATING THE PARTITIONS

The two partitions are given the volume names LABEL1
and LABEL2 by these commands.

$ [sudo mkfs.msdos -F 32 /dev/sdc1 -n LABEL1]
mkfs.msdos 2.11

$ [sudo mkfs.ext3 -L LABEL2 /dev/sdc2] mke2fs 1.40-WIP

5.4.5 FINALISING SD CARD

Finalizing SD card involves coping x-loader, u-boot, and ker-
nel images to the boot partition. The signed x-loader must be
called MLO on the card. The first file gets to copy is the
“MLO” from X-Loader. This has to be the first file as it is the
primary bootloader and the system just looks on the first few
cluster on the SD Card to find it. The second file is the “u-
boot.bin” and the third file is the kernel, “uImage”. The root
system has now to be untared to the second partition.

5.5 BRINGING UP OMAP-3530 ARM PROCESSOR
BOARD -

5.5.1 OMAP-3530 ARM PROCESSOR BOARD

 (BEAGLEBOARD-XM) –

The main features of BeagleBoard-xM are listed below:

 OMAP3530 Microprocessor – 1200 DMIPS, based on
ARM Cortex-A8 running at 600Mhz

 TMS320C64x+ DSP for versatile signal processing at up
to 430MHz

Fig. 5 BeagleBoard-xM

 Memories: 256MB of NAND Flash, 256MB of SDRAM
 SD/MMC Card slot, can be used as OS file system, file

 storage and more
 USB Host port which gives the option to connect a full

set of peripherals using a hub (ethernet adaptor, key-
board, mouse...).

 DVI-D digital output and S-VIDEO (NTSC/PAL) out-
put Stereo audio output and microphone input

 Multiplexable expansion header : I2C, SPI, UART,
GPIO, SD/MMC

 Typical power consumption : 2W (at 5V)

5.5.2 ARM BOARD SERIAL TERMINAL SET-UP –

For a Linux machine, a serial terminal such as Minicom is
used. Minicom is a text-based modem control and terminal
emulation program for Unix-like operating systems.
 Insert the SD card into the SD card slot of the target
board. Connect the target board to host machine using RS232
serial cable. Apply power supply to the OMAP-3530 ARM
processor board.

5.5.3 BOOTING UP THE ARM BOARD –

The term booting is short for bootstrapping, which refers to
the process by which a computer prepares itself to load an
operating system.

The boot process on the ARM Board works like this:
X-Loader -> U-Boot -> Kernel

Thus, the designed Embedded Linux which we store in SD-
card gets ported on OMAP-3530 processor.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 4, Issue 12, December-2013
ISSN 2229-5518 1951

IJSER © 2013
http://www.ijser.org

6. CONCLUSION
In this way, we describe Linux internels along with design
procedure of Embedded Linux for target architecture ARM.
Also give details about toolchain, building of root file system,
SD-card partitioning and porting of Embedded Linux on
OMAP-3530 ARM processor.

7. REFERENCES

[1] Hu Jie, “Research transplanting method of embedded linux
kernel based on ARM platform”, International conference on
Information Science and Management Engineering vol 2, pp.
35-38, 2010

[2] Pratyusha.Gandham1, Ramesh N.V.K2, ”Porting the linux
kernel to an arm based development board.”, International
Journal of Engineering Research and Applications (IJERA), Vol
2, pp.1614-1618, 2012

[3]] Chun-yue Bi, Yun-peng Liu, Ren-fang Wang, “Research of
Key Technologies for Embedded Linux Based on ARM”, In-
ternational Conference on ICCAAM,vol B, pp.V8-373 - V8-378,
2010

[4] Peng Zhou Ligang Hou, “Implementation of CAN bus device
driver design Based on Embedded System”, International Con-
ference on Communication, Networking & Broadcasting,
pp.1252 – 1255, 2010

[5] H.Lyytinen, K.Haataja & P.Toivanen, ”Designing and Imple-
menting an Embedded Linux for Limited Resource Devices",
Eighth International Conference on Networks, pp:18-23, 2009

[6] A book “Building Embedded Linux System" by Karim Ya-
ghmour and John Masters.

[7]] DongSeok Cho, DooHwan Bae, “Case Study on Installing a
Porting Process for Embedded Operating System in a Small
Team”, Secure Software Integration & Reliability Improve-
ment Companion, 2011 5th International Conference, 27-29
June 2011.

[8] Wooking and Tak-Shing, “Porting the Linux kernel to new
ARM Platform”, Aleph One, vol. 4, summer 2002

IJSER

http://www.ijser.org/

	1. Introduction
	Fig.1 Typical Embedded Linux Set Up
	2. GENERIC ARCHITECTURE OF EMBEDDED LINUX SYSTEM
	3. TYPES OF HOST/TARGET DEVOLOPMENT SETUP
	4. THE SYSTEM DEVOLOPING PLATFORM
	5. CREATING A TARGET EMBEDDED LINUX –
	5.2 A Toolchain –
	6. Conclusion
	7. References

